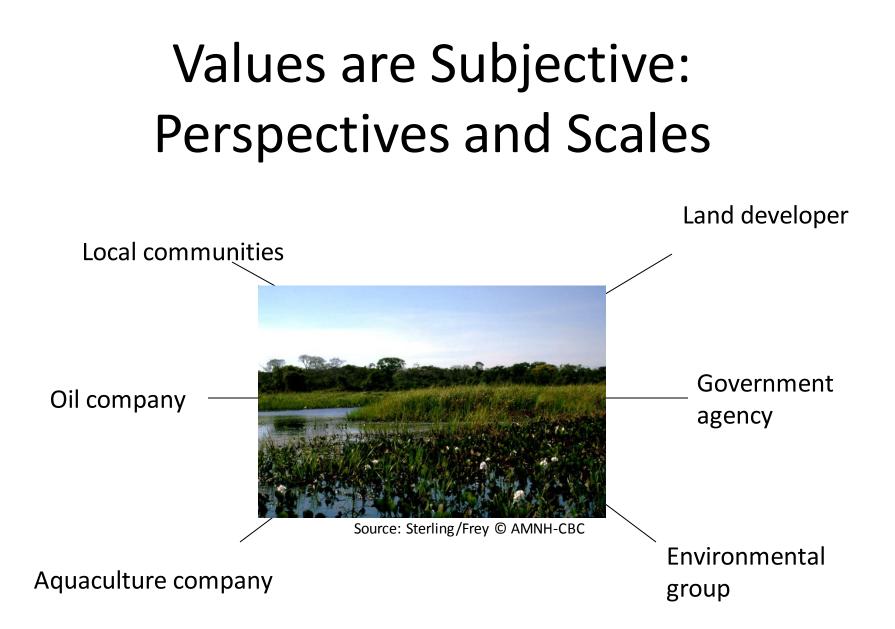
Why is Biodiversity Important?

Presentation Working version, December 2003

prepared by M.F. Laverty and E.J. Sterling


Reproduction of this material is authorized by the recipient institution for non-profit/non-commercial educational use and distribution to students enrolled in course work at the institution. Distribution may be made by photocopying or via the institution's intranet restricted to enrolled students. Recipient agrees not to make commercial use, such as, without limitation, in publications distributed by a commercial publisher, without the prior express written consent of AMNH.

All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows:

"Copyright 2003, by the authors of the material, with license for use granted to the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved."

This material is based on work supported by the National Science Foundation under the Course, Curriculum and Laboratory Improvement program (NSF 0127506), and the United States Fish and Wildlife Service (Grant Agreement No. 98210-1-G017).

Any opinions, findings and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the American Museum of Natural History, the National Science Foundation, or the United States Fish and Wildlife Service.

The Value of Biodiversity

Intrinsic/inherent value

• Extrinsic/utilitarian/ instrumental value

Source: Burmbaugh © AMNH-CBC

Intrinsic/inherent value

 The value of something independent of its value to anyone or anything else

Source: Frey © AMNH-CBC

 A philosophical concept

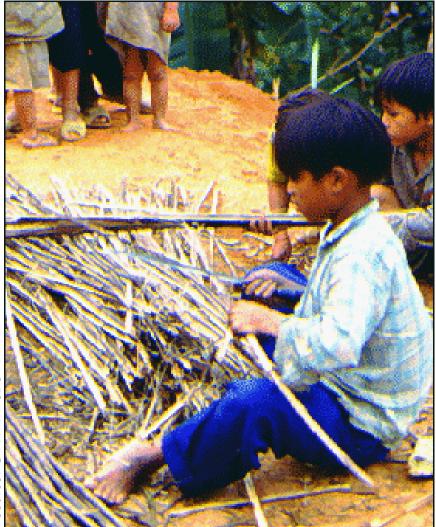
Categorizing Values

Direct Use Value(Goods)	Indirect Use Value (Services)	Non-Use Values	
Food, medicine, building material, fiber, fuel	Atmospheric and climate regulation, pollination, nutrient recycling	Potential (or Option) Value	Future value either as a good or service
	Cultural, Spiritual and Aesthetic	Existence Value	Value of knowing something exists
		Bequest Value	Value of knowing that

Direct Use Value: Goods

Source: © AMNH-CBC

- Food
- Building Materials
- Fuel
- Paper Products
- Fiber (clothing, textiles)
- Industrial products (waxes, rubber, oils)
- Medicine


Food

- Today, most people rely on ~20 types of plants, and only 3 to 4 are staple crops.
- Diversity is critical for developing new strains and breeds, i.e. that suit a particular environment or are resistant to pests or disease and as a source of new crops

Source: © AMNH-CBC

Building Materials, Paper Products, and Fuel

ource: © AMNH-CB

Fiber

Source: USDA Cotton Program

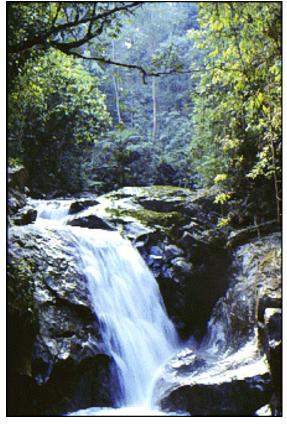
Source: USDA Photo b Ken Hammond

Industrial Products

Originating plant or animal	Product/End use
Cork oak (Quercus suber)	Cork
PARE RUBBER TREE (HEVEA	Rubber
<u>BRASILIENSIS)</u>	
Lac insect (<i>Laccifer spp.</i>)	shellac
CARNAUBA PALM (COPERNICIA CERIFERA)	CAR NAUBA WAX
Wax plant (<i>Euphorbia antisyphilitica</i>)	candelilla wax
Jojoba plant (Simmondsia chinensis)	jojoba oil
Cochineal insect (Dactylopius coccus)	CARMINE DYE*

Medicine

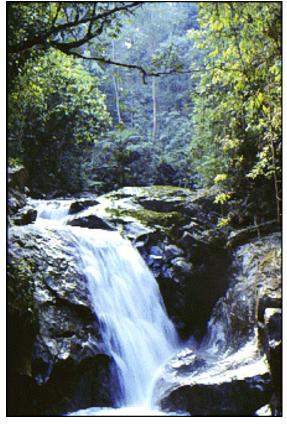
Source: © AMNH-CBC


- About 80% of the people in developing countries use plants as a primary source of medicine.
- 57% of the 150 mostprescribed drugs have their origins in biodiversity

Traditional Medicine:Basis of Many Drugs

Drug	Source	Use
Barbaloin, aloe-emodin	Aloe (Aloe spp.)	antibacterial, skin conditions, purgative
Atropine	Belladonna (Atopa belladonna)	Relaxant, sedative
Codeine	Opium poppy (<i>Papaver</i> <i>somniferum</i>)	Painkiller
Colchicine	Autumn crocus (Colchicum autumnale)	Anticanc er agen t
Digitoxin	Common foxglove (Digitalis purpurea)	Cardiac stimulant
Ephedrine, Pseudo ephedrine	Joint fir (Ephedra sinica)	Asthma, emphysema, bronchiodilator, hay fever
L-Dopa	Velvet bean (Mucuna deeringiana)	Parkinson's disease
Menthol	Mint (Menta spcs.)	Nasal conges tion
Morphine	Opium poppy (<i>Papaver somniferum</i>)	Painkiller
Quinine	Yellow cinchona (Cinchona ledge riana)	Malaria
Reserpine	Indian snakeroot (Rauvolfia serpentina)	Hypertension
Scopolamine	Thornappl e (Datura metel)	Sedative
Taxol	Pacific Yew (<i>Taxus</i> brevifolia)	Anticanc er
Vinblastine, vin cristine	Rosy periwinkle (Catharanthus roseus)	Leukemia

Indirect Use Values: Services


- Regulating global processes, such as atmosphere and climate
- Soil and water conservation
- Nutrient cycling
- Pollination and seed dispersal
- Control of agricultural pests
- Genetic library
- Inspiration and information
- Scientific and educational
- Tourism and recreation
- Cultural, spiritual, and aesthetic
- Community Resilience
- Strategic

Source: © AMNH-CBC

Indirect Use Values: Services

- Regulating global processes, such as atmosphere and climate
- Soil and water conservation
- Nutrient cycling
- Pollination and seed dispersal
- Control of agricultural pests
- Genetic library
- Inspiration and information
- Scientific and educational
- Tourism and recreation
- Cultural, spiritual, and aesthetic
- Community Resilience
- Strategic

Source: © AMNH-CBC

Global Processes: Atmospheric Regulation

 Photosynthetic biodiversity created an oxygenated atmosphere, and also has the potential to moderate the rising amounts of atmospheric carbon dioxide linked to global climate change

Source: Frey © AMNH-CBC

Global Processes: Climate Regulation

 Forests and other vegetation modify climate: by affecting sun reflectance, water vapor release, wind patterns and moisture loss. Forests help maintain a humid environment, for example, half of all rainfall in Amazon basin is

produced locally from forest-atmosphere cycle

Source: Bain © AMNH-CBC

Soil and Water Conservation

Example: Coastal wetlands and mangroves

 Filters excess nutrients and traps sediments that would otherwise impact neighboring marine and aquatic areas

Other services:

- Minimizes damage from waves and floods
- Serves as a nursery for juvenile commercial fish
- Provides habitat for many birds, fish, and shellfish

Source: Ersts © AMNH-CBC

Nutrient Cycling

- Biodiversity is critical to nutrient cycling and soil renewal
- Decomposers such as algae, fungi, and bacteria

Source: Snyder © AMNH-CBC

Pollination and Seed Dispersal

- Many flowering plants depend on animals for pollination to produce food.
- 30% of human crops depend on free services of pollinators; replacement value estimated billions of dollars/year in US alone

Source of Inspiration or Information

- Biomimicry
- Applied Biology
- Medical Models
- Education and
 Scientific Research

Source: Brumbaugh © AMNH-CBC

Medical Models

Source: New Jersey Fish and Wildlife

Hibernating bears may improve the treatment of:

- trauma patients
- kidney disease
- osteoporosis

Spiritual and Cultural Values

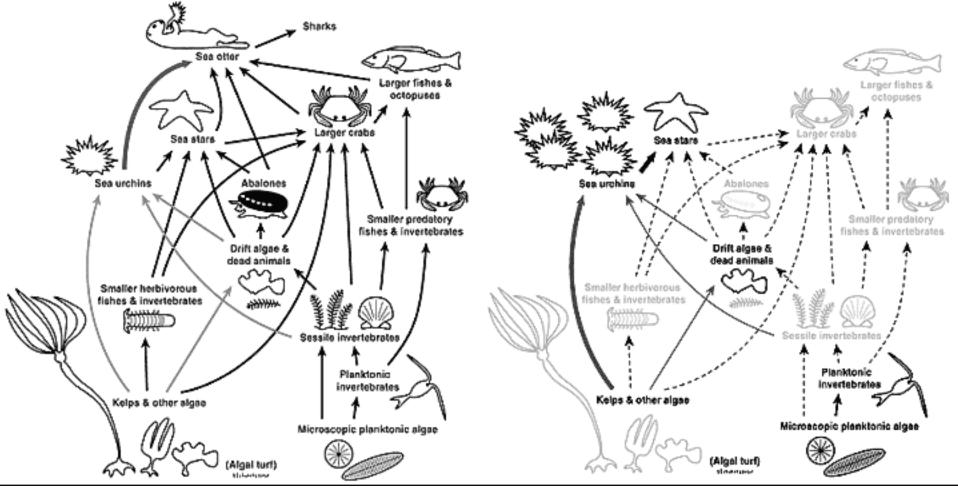
- The survival of natural areas and species are important to different cultures around the world.
- Thousands of cultural groups in the world, each have distinct traditions and knowledge for relating to natural world

Source: Projecto Gato Andino Bolivia, Villalba & Bernal, 1998

Spiritual and Cultural Values

- The survival of natural areas and species are important to different cultures around the world.
- Thousands of cultural groups in the world, each have distinct traditions and knowledge for relating to natural world

Source: Projecto Gato Andino Bolivia, Villalba & Bernal, 1998


Ecological Value: Does Diversity Make Communities More Resilient?

- Resilient ecosystems are characterized by:
 - Constancy (Lack of fluctuation)
 - Inertia (Resistance to perturbation)
 - Renewal (Ability to repair damage)
- Not all species are critical to an ecosystems function; many fill redundant roles; basis for community resilience and integrity
- If too many species or keystone species are lost, eventually it leads to the failure of ecosystem function

Kelp Forest Food Webs

A. With sea otters, kelp forest food web

B. Without sea otters, urchin barren food web

Source: Brumbaugh © AMNH-CBC

http://research.amnh.org/biodiversity/crisis/index.html

Non-Use or Passive Values

- Existence value
- Bequest value
- Potential or Option value

Why Do Values Matter?